Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Arch. argent. pediatr ; 115(4): e225-e229, ago. 2017. ilus
Article in English, Spanish | LILACS, BINACIS | ID: biblio-887351

ABSTRACT

La hiperglicinemia no cetósica es una encefalopatía por glicina autosómica recesiva y hereditaria sumamente rara, causada por una deficiencia en el sistema enzimatico de división de la glicina mitocondrial, que provoca síntomas clínicos graves. La hiperglicinemia no cetósica se caracteriza por fenotipos diversos y complejos, por ejemplo, hipotonía, convulsiones, deterioro cognitivo, retrasos del desarrollo y espasmos mioclónicos que podrían causar apnea e incluso la muerte. En este artículo, presentamos el caso de un niño de 1 año con convulsiones mioclónicas, hipotonía y coma, con aumento de la concentración de glicina en el plasma y el líquido cefalorraquídeo y con un índice de glicina en líquido cefalorraquídeo/plasma de 0,24. Existen dos mutaciones heterocigotas novedosas que confirman el diagnóstico de hiperglicinemia no cetósica. Una es una mutación de aminoácido, c.2516A>G (p.Y839C), y la otra es una mutación en los sitios de corte y empalme, c.2457+2T>A, en el gen GLDC.


Nonketotic hyperglycinemia is an extremely rare autosomal recessively inherited glycine encephalopathy caused by a deficiency in the mitochondrial glycine cleavage system, which leads to severe clinical symptoms. Nonketotic hyperglycinemia is characterized by complex and diverse phenotypes, such as hypotonia, seizures, cognitive impairment, developmental delays and myoclonic jerks that may lead to apnea and even death. Here we report a 1-year-old boy with myoclonic seizures, hypotonia and coma; he had elevated plasma and cerebrospinal fluid glycine levels, and cerebrospinal fluid/plasma glycine ratio was 0.24. Two novel heterozygous mutations confirm the diagnosis of nonketotic hyperglycinemia. One is a missense mutation c.2516A>G (p.Y839C) and the other one is a splicing mutation c.2457+2T>A in the GLDC gene.


Subject(s)
Humans , Male , Infant , Hyperglycinemia, Nonketotic/genetics , Glycine Dehydrogenase (Decarboxylating)/genetics , Mutation
2.
Chinese Journal of Contemporary Pediatrics ; (12): 1087-1091, 2017.
Article in Chinese | WPRIM | ID: wpr-300443

ABSTRACT

Nonketotic hyperglycinemia (NKH) is an autosomal recessive hereditary disease caused by a defect in the glycine cleavage system and is classified into typical and atypical NKH. Atypical NKH has complex manifestations and is difficult to diagnose in clinical practice. This article reports a family of NKH. The parents had normal phenotypes, and the older brother and the younger sister developed this disease in the neonatal period. The older brother manifested as intractable epilepsy, severe spastic diplegia, intellectual disability, an increased level of glycine in blood and cerebrospinal fluid, an increased glycine/creatinine ratio in urine, and an increased ratio of glycine concentration in cerebrospinal fluid and blood. The younger sister manifested as delayed language development, ataxia, chorea, mental and behavior disorders induced by pyrexia, hypotonia, an increased level of glycine in cerebrospinal fluid, and an increased ratio of glycine concentration in cerebrospinal fluid and blood. High-throughput sequencing found a maternal missense mutation, c.3006C>G (p.C1002W), and a paternal nonsense mutation, c.1256C>G (p.S419X), in the GLDC gene in both patients. These two mutations were thought to be pathogenic mutations by a biological software. H293T cells transfected with these two mutants of the GLDC gene had a down-regulated activity of glycine decarboxylase. NKH has various phenotypes, and high-throughput sequencing helps to make a confirmed diagnosis. Atypical NKH is associated with the downregulated activity of glycine decarboxylase caused by gene mutations.


Subject(s)
Child , Child, Preschool , Female , Humans , Male , Glycine Dehydrogenase (Decarboxylating) , Genetics , High-Throughput Nucleotide Sequencing , Hyperglycinemia, Nonketotic , Genetics , Mutation
3.
Chinese Journal of Contemporary Pediatrics ; (12): 268-271, 2017.
Article in Chinese | WPRIM | ID: wpr-351363

ABSTRACT

Nonketotic hyperglycinemia (NKH) is a rare, inborn error of metabolism. In this case report, a Chinese male infant was diagnosed with NKH caused by GLDC gene mutation. The clinical characteristics and genetic diagnosis were reported. The infant presented with an onset of early metabolic encephalopathy and Ohtahara syndrome. Both blood and urinary levels of metabolites were in the normal range. Brain MRI images indicated a poor development of corpus callosum, and a burst suppression pattern was found in the EEG. Results of target gene sequencing technology combined with multiplex ligation-dependent probe amplification (MLPA) indicated a heterozygous missense mutation of c.1786 C>T (p.R596X) in maternal exon 15 and a loss of heterozygosity of 4-15 exon gross deletions in paternal GLDC gene. These definite pathogenic mutations confirmed the diagnosis of NKH. The infant's clinical condition was not improved after treatment with adreno-cortico-tropic-hormone, topiramate and dextromethorphan, and he finally died at 4 months of age. Patients with NKH often exhibit complicated clinical phenotypes and are lack of specific symptoms. NKH could be diagnosed by metabolic screening and molecular genetic analysis.


Subject(s)
Humans , Infant, Newborn , Male , Glycine Dehydrogenase (Decarboxylating) , Genetics , Hyperglycinemia, Nonketotic , Diagnosis , Genetics , Mutation
4.
Korean Journal of Pediatrics ; : 301-305, 2012.
Article in English | WPRIM | ID: wpr-32996

ABSTRACT

Nonketotic hyperglycinemia (NKH) is a rare inborn error of amino acid metabolism. A defect in the glycine cleavage enzyme system results in highly elevated concentrations of glycine in the plasma, urine, cerebrospinal fluid, and brain, resulting in glycine-induced encephalopathy and neuropathy. The prevalence of NKH in Korea is very low, and no reports of surviving patients are available, given the scarcity and poor prognosis of this disease. In the current study, we present a patient with NKH diagnosed on the basis of clinical features, biochemical profiles, and genetic analysis. Magnetic resonance spectroscopy (MRS) allowed the measurement of absolute glycine concentrations in different parts of the brain that showed a significantly increased glycine peak, consolidating the diagnosis of NKH. In additional, serial MRS follow-up showed changes in the glycine/creatinine ratios in different parts of the brain. In conclusion, MRS is an effective, noninvasive diagnostic tool for NKH that can be used to distinguish this disease from other glycine metabolism disorders. It may also be useful for monitoring NKH treatment.


Subject(s)
Humans , Brain , Follow-Up Studies , Glycine , Glycine Dehydrogenase (Decarboxylating) , Hyperglycinemia, Nonketotic , Korea , Magnetic Resonance Spectroscopy , Magnetics , Magnets , Plasma , Prevalence , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL